
Chapter 4: Problem Solutions
Digital Filters

Problems on Non Ideal Filters

à Problem 4.1

We want to design a Discrete Time Low Pass Filter for a voice signal. The specifications are:

Passband Fp  4kHz ,   with 0.8dB  ripple;

Stopband FS  4.5kHz , with 50dB attenuation;

Sampling Frequency Fs  22kHz .

Determine a) the discrete time Passband and Stopband  frequencies, b) the maximum and minimum 
values of  H    in the Passband and the Stopband, where H  is the filter frequency response.

Solution

a) Recall the mapping from analog to digital frequency   2FFs , with Fs  the sampling fre-
quency. Then the passband and stopband frequencies become p  2 422 rad  0.36  rad, 
s  2 4.522 rad  0.41 rad;

b) A 0.8dB  ripple means that the frequency response in the passband is within the interval 1    
where   is such that 20 log101    0.8 This yields   100.04  1  0.096. Therefore the 
frequency response within the passband is within the interval 0.9035   H   1.096. 
Similarly in the stopband the maximum value is  H   105020  0.0031

à Problem 4.2

A Digital Filter has frequency response H  such that  

 0.95   H   1.05 for 0    0.3

0   H   0.005 for 0.4    



Also let the sampling frequency be Fs  8kHz. Determine the Passband and Stopband frequencies in 
kHz, the Passband ripple and the Stopband attenuation in dB.

Solution

The passband ripple is given by 20 log101.05  0.42dB, and the attenuation in the stopband 
20log100.005  46dB . The analog passband frequency is 0.3 Fs 2  1.2kHz and the 
stopband 0.4 Fs 2  1.6kHz

à Problem 4.3

A continuous time filter has frequency response 

 HF  1
1 j2F1000

Determine the passband and stopband frequencies in Hz, assuming a passband ripple of 1dB and 
attenuation of 40dB in the stopband. Also determine the half power frequency Fc .

Solution.

A passband ripple of 1dB means that the frequency response is within the interval 
1     HF   1    with 20log101    1 , which yields   0.12. Since 
 HF   11 2F1000 2

 then we determine the passband from the equation

11 2F1000 2
 1  0.12  0.88 

which yields F  85 .9Hz. Similarly for the stopband, we need to determine the frequency where 
 HF   104020  0.01  which yields F  15, 914 Hz  Notice that this filter has a very long 
transition region, as we can see from the plot of its magnitude:
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à Problem 4.4

A Digital Filter is defined by the difference equation

 yn  0.99yn  1  xn
The filter is clearly recursive. Determine the impulse response hn . 

a) Is the filter stable?

b) Would you classify it as Low Pass, Band Pass ... or what?

c) Would you feel comfortable in implementing this on a digital machine? 

Solution

a) The filter is stable since its transfer function Hz  110.99z1  zz0.99  has one pole at 
z  0.99;

b) It is a low pass filter since it has one pole close to z  1 , ie   0 . This makes the frequency 
response "large" at small frequencies. A plot of its magnitude is as follows:
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à Problem 4.5

A simple averaging filter is defined as

 yn  1N xn  1  ...  xn  N
This is clearly an FIR Filter. 

a) Let N  4 . Determine the transfer function, its zeros and poles;

b) Determine a general form for zeros and poles for any N;

c) By comparing yn  and yn  1  determine a recursive implementation.  Also the transfer func-
tion, together with its zeros and poles of the recursive implementation. Looking at this example, can 
we say that "any" recursive filter is IIR?

Solution

a) With N  4  we obtain the transfer function Hz  14 z1  z2  z3  z4 . After normaliza-
tion this becomes

 Hz  14 
z3z2z1z4

The are four poles at z  0  and three zeros from the solution

 z3  z2  z  1  1z4
1z  0

Therefore the zeros must be such that z4  1 , with the exclusion of z  1 . That is to say z4  ejk2  
for k  1, 2, 3 , and therefore the zeros are z  jk  with k  1, 2, 3 , ie z  j, 1, j.This is 
shown in the  z-plane below.
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b) Since the transfer function is of the form

 Hz  1N 
1zN

zN1z
the zeros are of the form z  ejk 2N , k  1, ..., N  1  and the poles are all at z  0 .

c) Since yn  1N xn  1  ...  xn  N  and 
yn  1  1N xn  2  ...  xn  N  1  by comparing  yn  and yn  1  we  see 

that

 yn  yn  1  1N xn  1  1N xn  N  1
This yields the transfer function

 Hz  1N 
z1zN1
1z1  1N 

1zN
zN1z

as we saw before. This is an example of a recursive filter with finite impulse response (FIR).

Problems on FIR Filters

à Problem 4.6

We want to design a Low Pass FIR Filter with the following characteristics:
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Passband 10kHz,

Stopband 11kHz, with attenuation  of 50dB,

Sampling frequency 44kHz

Determine the causal impulse response hn , and an expression for the phase within the passband. 
Use one of the standard windows listed in section 4.3.

Solution

First we have to determine the specifications in the digital freq. domain.

Passband:  p  2 1044  0.4545 rad

Stopband:  S  2 1144  0.5 rad

Therefore we choose the passband of the ideal filter as C  12 p  S  2144   0.477 . We 
need a Blackman window to satisfy the 50dB attenuation in the stopband. With this window the transi-
tion region has a width of 12N . Since we want a transition region S  P  244 we deter-
mine the filter length N  as

 244  12 N

which yields N  1222  264 . Therefore we choose N  265 and a shift L  132. Finally the 
impulse response is

 hn  hdn  132 wBlackmann
 sin0.4545 n132n132 wBlackmann

which is shown below.
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Within the passband the phase is linear and it is given by the expression

 ≠H   L  132 

à Problem 4.7

Repeat Problem 2.1 with  an equiripple filter  using the "remez" function in Matlab. Plot the two 
frequency responses and compare the two filters in terms of performance and complexity.

Solution

With Matlab we need first to determine the order of the filter. Use the function "remezord" as follows:

N, fo, mo, k  remezord10000, 11000, 1, 0, delta, delta, 44000;

with delta  10^5020  the maximum deviation corresponding to 50dB's. This yields an 
order N  114 , in the sense that the transfer function is of the form

 Hz  h0  h1z1  ...  h114z114

The impulse response hn  is obtained as

h  remezN, fo, mo, k
where fo, mo  and k  are from remezord. 
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Notice that the order of the equiripple filter N  114 is considerably smaller than the order of the 
filter designed with the Blackman window in Problem 4.6.

à Problem 4.8

Repeat Problem 4.6 using the Kaiser window. 

Solution

Wi the Kaiser window we have to determine the parameters N  and b from the specifications. In particu-
lar we want  an attenuation A  50dB  which yields a factor    from the expression

   0.5842A  210.4  .07886A  21  4.53

Also the filter length is determine from the expression

 N  A82.285   422.285   22  128.717

So we can choose N  129  and L  64 . The frequency response of the filter therefore becomes

 sin0.4545 n64n64 wKaisern
Its magnitude is shown below.
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à Problem 4.9

 We want to approximate a filter with frequency response

 HF   e0.1F if  F   10 Hz
0 if  F   11Hz

Let the sampling frequency be Fs  50Hz, and the attenuation in the stopband be 40dB. Determine 
the impulse response of a FIR filter which approximates this frequency response. Plot the frequency 
response in terms of magnitude and phase to verify that the approximation holds.

Solution

In the digital domain, let   2FFs  and therefore F  Fs 2 . Therefore the filter's desired 
frequency response becomes

  H   e52 if     25 rad
0 if  F   2.2 5 rad

The ideal filter therefore is going to have a frequency response Hd  given by

  Hd   e52 if     2.15
0 otherwise

and the impulse response
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 hdn  12  
2.15

2.15

e52ejnd  2.274050.795775 Cos1.31947 n1. n Sin1.31947 n5.685128.97758 n2

Since we want 40dB attenuation in the stopband we can use a hamming window, which has a transi-
tion region of width 8N . The desired width is   250 and therefore N  is determined from 
the equation

 250  8N

and N  50  4  200. Choose N  201 and L  100. This yields the impulse response

 hn  hdn  100whammingn

à Problem 4.10

A bandpass filter needs to be designed, to pass a signal within frequencies 4kHz and 8kHz, with 
two transition regions  not exceeding F  0.5kHz . Also we want the attenuation in the stopband 
not exceeding 50dB, and the same error within the passband. Finally let the sampling frequency be 
Fs  44kHz .

a) Determine the impulse response of the ideal filter;

b) Design the filter using  the Kaiser window;

c) Design the filter using the equiripple method.

Compare the two frequency responses.

Solution

a) In the digital frequency domain we want to design a bandpass filter which passes the frequencies 
between 2 444  211 rad  and 2 844  411 rad. Therefore the impulse 
response of the ideal filter is

 hdn  12  
211

411

ejnd  12  
411

211

ejnd   Sin 2 n 11 Sin 4 n 11 n  if n  0
0 if n  0

b) From the formulas of the Kaiser window we determine the parameters   and N  as follows from the 
attenuation  A  50dB  and the width of the stopband   2 0.544   44 rad.  Recall the 
formulas:
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 0.5842A  210.4  .07886A  21  4.53

N  A82.285  257.434

which yields a window of length N  259 and a time delay L  129. Finally thr impulse response 
becomes

 hn  hdn  129wkaisern

à Problem 4.11

You want to design a low pass filter with passband Fp  2kHz and stopband FS  2.5kHz, with 
attenuation of at least 40dB. Let the sampling frequency be Fs  10kHz. Using the techniques you 
know, determine the design with the least number of coefficients.

Solution

First we translate the specifications into the digital frequency domain:

Passband p  2 210  25

Stopband S  2 2.510  2

  2  25  10

We know three techniques:

a) Window based: from the desired attenuation we need a hamming window. From the  transition 
region

   8N  10

we obtain the length of the filter N  81;

b) Kaiser window: applying the formulas with A  40 and   0.1  we obtain

 N  4082.2850.1  45

c) Equiripple Filter: using the matlab function "remezord" we obtain the order N  39 which yields 
the lowest complexity. The corresponding frequency response is shown below (magnitude only in 
dB's).
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à Problem 4.12

In the section on equiripple filters we have taken a few things for granted. In this problem try  to prove 
the following simple facts:

a) when the order of the filter N  increases, the maximum error decreases;

b) the solution is unique, in the sense that, for any given  order N , there  is only one impulse response 
h0, ..., hNwhich minimizes the maximum error.

Solution

a) Call h


N  h


N0, ..., h


NN  the optimal solution (in the minmax sense) of order N . Then 
the  vector

 hN1  h


N0, ..., h


Nn, 0  h


N1

represents an impulse response of order N  1 , not necessarily optimal. Therefore

 eh


N1  ehN1  eh


N
The leftmost inequality is due to the fact that hN1  is not the optimal solution of order N  1 , and the 
rightmost equality is due to the fact

 HN1  H


N  for all 
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where HN1  and H


N  are the frequency responses of hN1  and h


N .

b) If there were two different solutions h


N  and gN  of the same order N  having the sign alternation 
property, the difference H


N  G


N  would have N  1  roots against the assumption of being 

polynomials (in cos) of order N .

à Problem 4.13

A Hilbert Transform is a filter with frequency response

 Hd  jsign
with sign  1  for   0  being  the signum function.

a) Plot the magnitude and phase of the filter;

b) Determine the impulse response hdn;

c) Determine a causal approximation h0, ..., hN  using a rectangular window. Plot the 
magnitude of the frequency response for various values of N , say N  40, 60, 120 . Does it con-
verge everywhere? In this case what would you call the transition region?

Solution

a) Since  Hd    jsign   1  for all  , and

 PhaseH    2 if   0
 2 if   0

we obtain the plot below.
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b) The impulse response becomes

 hdn  12  




jsignejnd  2 Sin n 2 2

n   if n  0

and hd0  0 . 

c) The plots of

 HL  
nL

L
hdnejn

are shown below (magnitude only) for L  20, 40, 60 corresponding to the orders 
N  40, 60, 120  respectively.  The transition region is defined around the frequency   0 .
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Problems on IIR Filters

à Problem 4.14

Using the Bilinear Transformation, determine the order N  and the cut off frequency c  of the analog 
prototype filter for the following discrete time design:

a) passband 8kHz;

b) stopband 9kHz;

c) passband ripple 0.5dB;

d) stopband attenuation 40dB;

e) sampling frequency Fs  44kHz .

Solution

First we define the problem in the digital frequency domain:

 p 
2  FpFs

 1.1424 rad

S  2  FSFs
 1.2852 rad

Then we determine the specifications of the Analog Prototype:
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 p  Fs2 Tan p2   56554.2 radsec
S  Fs2 Tan S2   65876.0 radsec

Now from the Passband Ripple we determine e as

 p  100.520  0.944

   1p
2

 1  0.349

Then we determine the order of the filter

 N 
log 1s

2

2s

2 
2 log sp

  37.0762

which yields N  38 . Finally we determine the cut off frequency of the filter as

 c  p 1N  58141.4 radsec

and therefore its frequency response becomes

 H  1
12 p

2N  1
1 p1N 2N

The following plot shows the poles of the filter in the s-plane:
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The frequency response (magnitude only) is shown next:
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à Problem 4.15

A 4-th order Butterworth filter has cut off frequency c  200 radsec .

a) Determine the zeros and poles of the transfer function;

b) What would be its passband and stopband frequencies if we want 1dB ripple in the passband and 
40dB attenuation in the stopband?

c) If we apply a Bilinear Transformation with sampling frequency Fs  1kHz, determine  the zeros 
and poles in the z-plane.

Solution

a) Recall that an N  th  order Butterworth Filter has poles on a circle with radius 
c  200 radsec  spaced by an angle of 360 2N  3608  45 degrees.  The poles are 
shown in the figure below

planes 

and they are given by p1,4  200ej58  and p2,3  200ej78 . All zeros are at s   .

b) From the frequency response H 1
1 200 8  we  solve for p  and S  , as

 Hp  10120  530.673 radsec
HS  104020  1986.89 radsec

c) Applying the formula for the Bilinear Transformation each pole is mapped as

 z  
s 2Ts
s 2Ts
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This yields poles in the z-plane at 0.673045  j 0.433479  and 0.53675  j0.143193 and 
four  zeros at z  1 .

à Problem 4.16

Repeat Problem 4.14 using a Chebyshev filter. Which one would you choose if complexity is an issue?

Solution

The specifications of the prototype filter are the same, since they depend on the original specifications 
of the filter and on the bilinear transformation. Recall them here for convenience:

 p 
2  FpFs

 1.1424 rad

S  2  FSFs
 1.2852 rad

 p  Fs2 Tan p2   56554.2 radsec
S  Fs2 Tan S2   65876.0 radsec

 p  10120  0.944
S  104020  0.01

   1p
2

 1  0.349

Then use the formulas for the Chebyshev Filter, from section 4.4, to obtain N  12  (the complexity of 
the filter) and the frequency response as shown below.

The filter order is determined from the formula

N 
log 

1S
2 21 1S

2
 S




log


 Sp

 Sp
2

 1




which yields N  12 . Then the poles of the filter in the s-plane are computed as
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2
 , k  0, ..., N  1

The poles in the s-plane are shown below. Notice the two different scales for the Real and Imaginary 
axis
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The plot of the frequency response is shown below. If you compare it with the Butterworth filter in 
Problem 4.14, notice that you obtain the same attenuation with a lower complexity (N  12 for Cheby-
shev and N  38  for Butterworth).
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à Problem 4.17

We want to implement the analog filter with transfer function 

 Hs  2s1s2s1

by a discrete time approximation, using the Bilinear Transformation.  Let Fs  10Hz be the sampling 
frequency.

a) Determine zeros and poles of both the analog filter Hs and the discrete time implementation  
Hz;

b) Determine the Linear Difference Equation of the discrete time implementation;

c) Plot the frequency responses of the digital filter H  and the analog filter H . Verify that you 
can obtain one from the other by the appropriate frequency transformation. 

Solution

a) The zeros of the analog system are s  12 , and s    (yes this is a zero too!). The poles are 
the solution of  s2  s  1  0  which yields s  ej23

Applying the mapping sØz 

 z  
s 2Ts
s 2Ts

we can verify that the zeros are mapped as

 s  12  z  0.9512
s    z  1

and the poles

s  ej23  z  0.947743  j 0.0822827  

b) Since we know the zeros and the poles we can write the transfer function to be

 Hz  K z1z0.9512z0.947743j 0.0822827z0.947743j 0.0822827
with the constant K  to be determined. Combining terms we obtain

 Hz  K z2 0.0488z0.9512z21.8955z 0.9050

We can determine K  by matching the value at one frequency component, say at s  0  z  1:

 Hs s0  2s1s2s1  1  Hz z1  K z2 0.0488z0.9512z21.8955z 0.9050 z1  10.2737 K

Equating the two we obtain K  110.2737  0.0973361. Finally the transfer function
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 Hz  0.0973361 z2 0.0488z0.9512z21.8955z 0.9050

and the difference equation

 yn  1.8955yn  1  0.9050yn  2 
0.09763361 xn  0.0488xn  1  0.9512xn  2

à Problem 4.18

An integrator has transfer function

 Hs  1s

a) Determine a discrete time implementation using Euler's approximation, with sampling frequency 
Fs  10Hz . Sketch the frequency response, and verify that it approximates the integrator for low 
frequencies;

b) Same as a), using the Bilinear Transformation. 

Solution

a) By the Euler approximation

 s  1z1
Ts

we obtain

 Hz  0.1 zz1

The frequency response is

 H  0.1 ej
ej1  0.1 ej

2j ej2sin2
For   small, we can approximate ej  1  and sin2   2 , and therefore we see that, for 
small   the discrete time system behaves like an integrator with frequency response

 H  1j Fs
 1j2F FFs2

The following plot compares the frequency response  H   with the ideal integrator. We can see 
that in this case the Euler approximation gives a good approximation.
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b) With the Bilinear Transformation we have

 Hz  Ts2
1z1
1z1

and the frequency response is

 H  0.12  cos 2 j sin 2 

The following plot compares the frequency response  H   with the ideal integrator. Even here 
we can see that in this case the Euler approximation gives a good approximation. Notice that at 
z  1  (ie   ), the frequency response is zero, and in the dB plot it goes to  .
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à Problem 4.19

You want to design an analog Band Pass Filter which passes the frequencies in the interval

 5kHz  F  6kHz
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with 1dB ripple in the passband. Let the the filter be Butterworth with order N  4 . 

a) Determine the frequency transformation Low Pass to Band Pass you would use;

b) Determine the frequency response of the corresponding Low Pass Filter, together with its zeros and 
poles;

c) Determine the zeros and poles of the Band Pass Filter and its transfer function.

Solution

From the specifications we determine the lower and upper frequencies as

L  2  5000
U  2  6000

Then we choose a prototype Butterworth filter of order N  4  and with arbitrary   cut off frequency, 
say

C  1  

which has poles at

pk  C 
 2 

 2 k1 2 4 , k  0, 1, 2, 3

In order  to apply the proper transformation (Low Pass to Band Pass)

qs  C s2  L U
s U  L

we compute the poles of the bandpass filter from the equations

qs  pk ,  k  0, 1, 2, 3

Each equation is quadratic and it yields two solutions. As a total we have 24  8  poles for the 
bandpass filter which are given by

 poles  1303.33  37418.3 , 1101.14  31613.4 ,
3004.15  35515.3 , 2800.76  33110.8 , 3004.15  35515.3 ,
2800.76  33110.8 , 1303.33  37418.3 , 1101.14  31613.4 

The filter has also four zeros at s  0 , due to the fact that q0   . From the zeros and the poles 
we determine the transfer function. The magnitude of the frequency response is shown below
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Problems Involving Material from Previous Chapters

à Problem 4.20

Recall that, when we apply a digital filter to a continuous time signal, we need two analog filters: 
Anti-Aliasing and Reconstruction.  Due to hardware constraints and cost, these two filters cannot have 
a very large order, and they represent a constraint in our design. Suppose we want to design a digital 
filter for a signal having bandwidth of 8kHz, and we have to use a 5 pole Butterworth filter 
(commercially available for low cost) for both antialiasing and reconstruction filters. Also we want 
1dB passband ripple and 50dB attenuation in the stopband.

a) What do you think would be the minimum sampling frequency we can have, with these two analog 
filters. (Hint: recall what is the passband and what is the stopband of the analog antialising and recon-
struction filters in terms of signal bandwidth and sampling frequency);

b) The 5 pole Butterworth filter you buy, often is based on switched capacitor technology. This allows 
to select the cut off frequency c  fairly easily, by adjusting the frequency of an oscillator. Given the 
sampling frequency you determined in question Q1, determine a suitable value for the cut off fre-
quency c  of the filter.
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Solution

a) From the specifications of the problem, we have to pass all frequencies up to 8kHz . This yields

 p  2 8000 rad/sec

We want 1dB ripple in the passband. This gives a value of   as

   0.509

Therefore the frequency response becomes

  H  1
12 p

10

with e and p  as given. Now we have to find the stopband frequency, from the requirement of 50dB 
attenuation. This leads to the equation

 H  1

1  2 p

10  105020

which we solve for W. This yields the stopband frequency

S 181950. rad/sec

or, in Hertz,

FS  S2  28958.2 Hz

Now the sampling frequency Fs  has to be such that

FS  Fs  8000 Hz

which yields a sampling frequency

 Fs  FS  8000  28958.2  8000  36.9582kHz

b) The cut-off frequency C  of the filter is obtained by solving

 H  1

1  2 p

10 
1

2
which yields C  57537.7 radsec. The figure below illustrates the problem.
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à Problem 4.21

In your CD the data is sampled at 44.1kHz (CD quality), and we want to have a good sound quality up 
to 21kHz. If you had a to use  an analog Butterworth filter as a reconstruction filter, what would be the 
order of your filter? Do you think you can reasonably build a filter with that complexity? (I do not 
think so either!) The chapter on Multi Rate DSP is going to show you how the CD technology solves 
this problem.

Solution

Since we want the filter to pass the signal and reject all frequencies above Fs 2 ,  we can see that 
passband and stopband frequencies become

 p  2 21000 radsec
S  244100 2  2 22050rad sec

Assuming a 1dB passband ripple and 40dB attenuation in the stopband, this would yield a frequency 
response of the form

  H  1
12  p

2 N

with e=0.509 and P   as given. For an attenuation of  40dB we obtain N  108 after solving

  HS  1
12  Sp

2 N  0.01

for the order N . 

Solutions_Chapter4[1].nb 27


